

E 4:2

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

					E 4:2					
Level	Load	Rated	Rated power		Line current	Watt *1)			Thermal Dissipation	
				VAC	IAC *2)	In	Out	Dissipated	BTU/hr	kCal/hr
Standby				230	0.320	0.7	0	0.72	2.5	0.6
Standby			120	0.016	0.4	0	0.38	1.3	0.3	
Power on Idling				230	0.186	21.5	0	21.5	73.3	18.5
Power on, Idling			120	0.306	22.4	0	22.4	76.6	19.3	
Pink Pseudo Noise (1/8)	70 V / Ch.	200	x 2	230	0.7	80	50	30	101	26
				120	1.1	86	50	36	123	31
	16 Ω / Ch.	200	x 2	230	0.7	80	50	30	101	26
				120	1.1	85	50	35	118	30
	8 Ω / Ch.	200	x 2	230	0.7	81	50	31	105	26
				120	1.1	87	50	37	125	32
	4 Ω / Ch.	200	x 2	230	0.8	89	50	39	133	34
		200		120	1.2	92	50	42	144	36
	2 Ω / Ch.	200	x 2	230	0.8	98	50	48	165	42
				120	1.3	100	50	50	172	43

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

^{*2)} Current draw figures measured at 230 V. as well as 120 V. The efficiency is similar, but not identical for the two scenarios. The efficiency for 100 V mains is very similar to that of 120 V.