

E 8:2

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

					E 8:2					
Level	Load	Rated power		Mains voltage	Line current	Watt *1)			Thermal Dissipation	
				VAC	IAC *2)	In	Out	Dissipated	BTU/hr	kCal/hr
Standby				230	0.033	0.72	0.0	0.7	2.5	0.6
Statiupy			120	0.019	0.38	0.0	0.4	1.3	0.3	
Power on Idling				230	0.183	20.7	0.0	20.7	70.5	17.8
Power on, Idling			120	0.315	21.9	0.0	21.9	74.7	18.8	
Pink Pseudo Noise (1/8)	70 V / Ch.	400	x 2	230	1.2	139	100	39	134	34
		400		120	2.1	148	100	48	163	41
	16 Ω / Ch.	010	x 2	230	0.9	112	78	35	119	30
		310		120	1.8	118	78	41	140	35
	8 Ω / Ch.	400	x 2	230	1.2	141	100	41	140	35
				120	2.0	148	100	48	164	41
	4 Ω / Ch.	400	x 2	230	1.3	149	100	49	166	42
		400		120	2.1	155	100	55	187	47
	2 Ω / Ch.	400	x 2	230	1.4	172	100	72	244	61
		400		120	2.3	174	100	74	254	64

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

^{*2)} Current draw figures measured at 230 V. as well as 120 V. The efficiency is similar, but not identical for the two scenarios. The efficiency for 100 V mains is very similar to that of 120 V.