

LUCIA® 120/2M

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

LUCIA 120/2M										
Level	Load	Output power		Mains voltage	Line current	Watt *1)			Thermal Dissipation	
				VAC	IAC	In	Out	Dissipated	BTU/hr	kCal/hr
Standby w. remote Power Off.				230	0.032	0.88	0	1	3	1
				120	0.027	0.77	0	1	3	1
				100	0.028	0.76	0	1	3	1
Power on, Idling				230	0.14	14.8	0	15	51	13
				120	0.21	13.4	0	13	46	12
				100	0.25	14.1	0	14	48	12
Pink Pseudo Noise (1/8)	16 Ω / Ch.	30	x 2	230	0.25	28.2	7.5	21	71	18
				120	0.35	24.7	7.5	17	59	15
				100	0.41	25.6	7.5	18	62	16
	8 Ω / Ch.	60	x 2	230	0.33	38.5	15	23	80	20
				120	0.47	34.0	15	19	65	16
				100	0.55	35.4	15	20	70	18
	4 Ω / Ch.	60	x 2	230	0.33	39.2	15	24	83	21
				120	0.48	35.3	15	20	69	17
				100	0.56	36.3	15	21	73	18
	2 Ω / Ch.	60	x 2	230	0.34	40.6	15	26	87	22
				120	0.51	36.7	15	22	74	19
				100	0.59	37.6	15	23	77	19

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

